The ability to make decisions and to assess potential courses of action is a corner-stone of many AI applications, and usually this requires explicit information about the decision-maker s preferences. IN many applications, preference elicitation IS a serious bottleneck.The USER either does NOT have the time, the knowledge, OR the expert support required TO specify complex multi - attribute utility functions. IN such cases, a method that IS based ON intuitive, yet expressive, preference statements IS required. IN this paper we suggest the USE OF TCP - nets, an enhancement OF CP - nets, AS a tool FOR representing, AND reasoning about qualitative preference statements.We present AND motivate this framework, define its semantics, AND show how it can be used TO perform constrained optimization.