We address the main problem of self-learning LLM: the question of what to learn. We propose a self-learning LLM framework that enables an LLM to independently learn previously unknown knowledge through self-assessment of their own hallucinations. Using the hallucination score, we introduce a new concept of Points in The Unknown (PiUs), along with one extrinsic and three intrinsic methods for automatic PiUs identification. It facilitates the creation of a self-learning loop that focuses exclusively on the knowledge gap in Points in The Unknown, resulting in a reduced hallucination score. We also developed evaluation metrics for gauging an LLM's self-learning capability. Our experiments revealed that 7B-Mistral models that have been finetuned or aligned are capable of self-learning considerably well. Our self-learning concept allows more efficient LLM updates and opens new perspectives for knowledge exchange. It may also increase public trust in AI.