In this paper, we study two well known methods of Ising structure learning, namely the pseudolikelihood approach and the interaction screening approach, in the context of tensor recovery in $k$-spin Ising models. We show that both these approaches, with proper regularization, retrieve the underlying hypernetwork structure using a sample size logarithmic in the number of network nodes, and exponential in the maximum interaction strength and maximum node-degree. We also track down the exact dependence of the rate of tensor recovery on the interaction order $k$, that is allowed to grow with the number of samples and nodes, for both the approaches. Finally, we provide a comparative discussion of the performance of the two approaches based on simulation studies, which also demonstrate the exponential dependence of the tensor recovery rate on the maximum coupling strength.