While the Kaldi framework provides state-of-the-art components for speech recognition like feature extraction, deep neural network (DNN)-based acoustic models, and a weighted finite state transducer (WFST)-based decoder, it is difficult to implement a new flexible DNN model. By contrast, a general-purpose deep learning framework, such as TensorFlow, can easily build various types of neural network architectures using a tensor-based computation method, but it is difficult to apply them to WFST-based speech recognition. In this study, a TensorFlow-based acoustic model is integrated with a WFST-based Kaldi decoder to combine the two frameworks. The features and alignments used in Kaldi are converted so they can be trained by the TensorFlow model, and the DNN-based acoustic model is then trained. In the integrated Kaldi decoder, the posterior probabilities are calculated by querying the trained TensorFlow model, and a beam search is performed to generate the lattice. The advantages of the proposed one-pass decoder include the application of various types of neural networks to WFST-based speech recognition and WFST-based online decoding using a TensorFlow-based acoustic model. The TensorFlow based acoustic models trained using the RM, WSJ, and LibriSpeech datasets show the same level of performance as the model trained using the Kaldi framework.