This paper introduces PhyloLM, a method applying phylogenetic algorithms to Large Language Models to explore their finetuning relationships, and predict their performance characteristics. By leveraging the phylogenetic distance metric, we construct dendrograms, which satisfactorily capture distinct LLM families (across a set of 77 open-source and 22 closed models). Furthermore, phylogenetic distance predicts performances in benchmarks (we test MMLU and ARC), thus enabling a time and cost-effective estimation of LLM capabilities. The approach translates genetic concepts to machine learning, offering tools to infer LLM development, relationships, and capabilities, even in the absence of transparent training information.