Manipulation tasks often require a high degree of dexterity, typically necessitating grippers with multiple degrees of freedom (DoF). While a robotic hand equipped with multiple fingers can execute precise and intricate manipulation tasks, the inherent redundancy stemming from its extensive DoF often adds unnecessary complexity. In this paper, we introduce the design of a tactile sensor-equipped gripper with two fingers and five DoF. We present a novel design integrating a GelSight tactile sensor, enhancing sensing capabilities and enabling finer control during specific manipulation tasks. To evaluate the gripper's performance, we conduct experiments involving two challenging tasks: 1) retrieving, singularizing, and classification of various objects embedded in granular media, and 2) executing scooping manipulations of credit cards in confined environments to achieve precise insertion. Our results demonstrate the efficiency of the proposed approach, with a high success rate for singulation and classification tasks, particularly for spherical objects at high as 94.3%, and a 100% success rate for scooping and inserting credit cards.