Large Language Models (LLMs) demonstrate exceptional reasoning capabilities, often achieving state-of-the-art performance in various tasks. However, their substantial computational and memory demands, due to billions of parameters, hinder deployment in resource-constrained environments. A promising solution is knowledge distillation, where LLMs transfer reasoning capabilities to Small Language Models (SLMs, $\le$ 1B parameters), enabling wider deployment on low-resource devices. Existing methods primarily focus on generating high-quality reasoning rationales for distillation datasets but often neglect the critical role of data quantity and quality. To address these challenges, we propose a Feedback-Driven Distillation (FDD) framework to enhance SLMs' mathematical reasoning capabilities. In the initialization stage, a distillation dataset is constructed by prompting LLMs to pair mathematical problems with corresponding reasoning rationales. We classify problems into easy and hard categories based on SLM performance. For easy problems, LLMs generate more complex variations, while for hard problems, new questions of similar complexity are synthesized. In addition, we propose a multi-round distillation paradigm to iteratively enrich the distillation datasets, thereby progressively improving the mathematical reasoning abilities of SLMs. Experimental results demonstrate that our method can make SLMs achieve SOTA mathematical reasoning performance.