In the dataset of image captioning, each image is aligned with several captions. Despite the fact that the quality of these descriptions varies, existing captioning models treat them equally in the training process. In this paper, we propose a new control signal of sentence quality, which is taken as an additional input to the captioning model. By integrating the control signal information, captioning models are aware of the quality level of the target sentences and handle them differently. Moreover, we propose a novel reinforcement training method specially designed for the control signal of sentence quality: Quality-oriented Self-Annotated Training (Q-SAT). Equipped with R-Drop strategy, models controlled by the highest quality level surpass baseline models a lot on accuracy-based evaluation metrics, which validates the effectiveness of our proposed methods.