Cryo-electron tomography (cryoET) is a technique that captures images of biological samples at different tilts, preserving their native state as much as possible. Along with the partial tilt series and noise, one of the major challenges in estimating the accurate 3D structure of the sample is the deformations in the images incurred during the acquisition. We model these deformations as continuous operators and estimate the unknown 3D volume using implicit neural representations. This framework allows to easily incorporate the deformation and estimate jointly the deformation parameters and the volume using a standard optimization algorithm. This approach doesn't require training data and can benefit from standard prior in the optimization procedure.