In this research, we propose ImmuNetNAS, a novel Neural Architecture Search (NAS) approach inspired by the immune network theory. The core of ImmuNetNAS is built on the original immune network algorithm, which iteratively updates the population through hypermutation and selection, and eliminates the self-generation individuals that do not meet the requirements through comparing antibody affinity and inter-specific similarity. In addition, in order to facilitate the mutation operation, we propose a novel two-component based neural structure coding strategy. Furthermore, an improved mutation strategy based on Standard Genetic Algorithm (SGA) was proposed according to this encoding method. Finally, based on the proposed two-component based coding method, a new antibody affinity calculation method was developed to screen suitable neural architectures. Systematic evaluations demonstrate that our system has achieved good performance on both the MNIST and CIFAR-10 datasets. We open-source our code on GitHub in order to share it with other deep learning researchers and practitioners.