Multi-Robot System (MRS) has garnered widespread research interest and fostered tremendous interesting applications, especially in cooperative control fields. Yet little light has been shed on the compound ability of formation, monitoring and defence in decentralized large-scale MRS for pursuit avoidance, which puts stringent requirements on the capability of coordination and adaptability. In this paper, we put forward a decentralized Imitation learning based Alternative Multi-Agent Proximal Policy Optimization (IA-MAPPO) algorithm to provide a flexible and communication-economic solution to execute the pursuit avoidance task in well-formed swarm. In particular, a policy-distillation based MAPPO executor is firstly devised to capably accomplish and swiftly switch between multiple formations in a centralized manner. Furthermore, we utilize imitation learning to decentralize the formation controller, so as to reduce the communication overheads and enhance the scalability. Afterwards, alternative training is leveraged to compensate the performance loss incurred by decentralization. The simulation results validate the effectiveness of IA-MAPPO and extensive ablation experiments further show the performance comparable to a centralized solution with significant decrease in communication overheads.