Image super-resolution (SR) techniques are used to generate a high-resolution image from a low-resolution image. Until now, deep generative models such as autoregressive models and Generative Adversarial Networks (GANs) have proven to be effective at modelling high-resolution images. Models based on Variational Autoencoders (VAEs) have often been criticized for their feeble generative performance, but with new advancements such as VDVAE (very deep VAE), there is now strong evidence that deep VAEs have the potential to outperform current state-of-the-art models for high-resolution image generation. In this paper, we introduce VDVAE-SR, a new model that aims to exploit the most recent deep VAE methodologies to improve upon image super-resolution using transfer learning on pretrained VDVAEs. Through qualitative and quantitative evaluations, we show that the proposed model is competitive with other state-of-the-art methods.