While interest in conversational recommender systems has been on the rise, operational systems suitable for serving as research platforms for comprehensive studies are currently lacking. This paper introduces an enhanced version of the IAI MovieBot conversational movie recommender system, aiming to evolve it into a robust and adaptable platform for conducting user-facing experiments. The key highlights of this enhancement include the addition of trainable neural components for natural language understanding and dialogue policy, transparent and explainable modeling of user preferences, along with improvements in the user interface and research infrastructure.