The exceptional spectral resolution of hyperspectral imagery enables material insights that are not possible with RGB or multispectral images. Yet, the full potential of this data is often underutilized by deep learning techniques due to the scarcity of hyperspectral-native CNN backbones. To bridge this gap, we introduce HyperKon, a self-supervised contrastive learning network designed and trained on hyperspectral data from the EnMAP Hyperspectral Satellite\cite{kaufmann2012environmental}. HyperKon uniquely leverages the high spectral continuity, range, and resolution of hyperspectral data through a spectral attention mechanism and specialized convolutional layers. We also perform a thorough ablation study on different kinds of layers, showing their performance in understanding hyperspectral layers. It achieves an outstanding 98% Top-1 retrieval accuracy and outperforms traditional RGB-trained backbones in hyperspectral pan-sharpening tasks. Additionally, in hyperspectral image classification, HyperKon surpasses state-of-the-art methods, indicating a paradigm shift in hyperspectral image analysis and underscoring the importance of hyperspectral-native backbones.