Current spectrum-sharing frameworks struggle with adaptability, often being either static or insufficiently dynamic. They primarily emphasize temporal sharing while overlooking spatial and spectral dimensions. We propose an adaptive, AI-driven spectrum-sharing framework within the O-RAN architecture, integrating discriminative and generative AI (GenAI) to forecast spectrum needs across multiple timescales and spatial granularities. A marketplace model, managed by an authorized spectrum broker, enables operators to trade spectrum dynamically, balancing static assignments with real-time trading. GenAI enhances traffic prediction, spectrum estimation, and allocation, optimizing utilization while reducing costs. This modular, flexible approach fosters operator collaboration, maximizing efficiency and revenue. A key research challenge is refining allocation granularity and spatio-temporal dynamics beyond existing models.