Face swapping has gained significant traction, driven by the plethora of human face synthesis facilitated by deep learning methods. However, previous face swapping methods that used generative adversarial networks (GANs) as backbones have faced challenges such as inconsistency in blending, distortions, artifacts, and issues with training stability. To address these limitations, we propose an innovative end-to-end framework for high-fidelity face swapping. First, we introduce a StyleGAN-based facial attributes encoder that extracts essential features from faces and inverts them into a latent style code, encapsulating indispensable facial attributes for successful face swapping. Second, we introduce an attention-based style blending module to effectively transfer Face IDs from source to target. To ensure accurate and quality transferring, a series of constraint measures including contrastive face ID learning, facial landmark alignment, and dual swap consistency is implemented. Finally, the blended style code is translated back to the image space via the style decoder, which is of high training stability and generative capability. Extensive experiments on the CelebA-HQ dataset highlight the superior visual quality of generated images from our face-swapping methodology when compared to other state-of-the-art methods, and the effectiveness of each proposed module. Source code and weights will be publicly available.