Graph Transformers (GTs) have demonstrated remarkable performance in incorporating various graph structure information, e.g., long-range structural dependency, into graph representation learning. However, self-attention -- the core module of GTs -- preserves only low-frequency signals on graph features, retaining only homophilic patterns that capture similar features among the connected nodes. Consequently, it has insufficient capacity in modeling complex node label patterns, such as the opposite of homophilic patterns -- heterophilic patterns. Some improved GTs deal with the problem by learning polynomial filters or performing self-attention over the first-order graph spectrum. However, these GTs either ignore rich information contained in the whole spectrum or neglect higher-order spectrum information, resulting in limited flexibility and frequency response in their spectral filters. To tackle these challenges, we propose a novel GT network, namely Graph Fourier Kolmogorov-Arnold Transformers (GrokFormer), to go beyond the self-attention in GTs. GrokFormer leverages learnable activation functions in order-$K$ graph spectrum through Fourier series modeling to i) learn eigenvalue-targeted filter functions producing learnable base that can capture a broad range of frequency signals flexibly, and ii) extract first- and higher-order graph spectral information adaptively. In doing so, GrokFormer can effectively capture intricate patterns hidden across different orders and levels of frequency signals, learning expressive, order-and-frequency-adaptive graph representations. Comprehensive experiments conducted on 10 node classification datasets across various domains, scales, and levels of graph heterophily, as well as 5 graph classification datasets, demonstrate that GrokFormer outperforms state-of-the-art GTs and other advanced graph neural networks.