GNN-based recommenders have excelled in modeling intricate user-item interactions through multi-hop message passing. However, existing methods often overlook the dynamic nature of evolving user-item interactions, which impedes the adaption to changing user preferences and distribution shifts in newly arriving data. Thus, their scalability and performances in real-world dynamic environments are limited. In this study, we propose GraphPL, a framework that incorporates parameter-efficient and dynamic graph pre-training with prompt learning. This novel combination empowers GNNs to effectively capture both long-term user preferences and short-term behavior dynamics, enabling the delivery of accurate and timely recommendations. Our GraphPL framework addresses the challenge of evolving user preferences by seamlessly integrating a temporal prompt mechanism and a graph-structural prompt learning mechanism into the pre-trained GNN model. The temporal prompt mechanism encodes time information on user-item interaction, allowing the model to naturally capture temporal context, while the graph-structural prompt learning mechanism enables the transfer of pre-trained knowledge to adapt to behavior dynamics without the need for continuous incremental training. We further bring in a dynamic evaluation setting for recommendation to mimic real-world dynamic scenarios and bridge the offline-online gap to a better level. Our extensive experiments including a large-scale industrial deployment showcases the lightweight plug-in scalability of our GraphPL when integrated with various state-of-the-art recommenders, emphasizing the advantages of GraphPL in terms of effectiveness, robustness and efficiency.