Graphs have become pervasive tools to represent information and datasets with irregular support. However, in many cases, the underlying graph is either unavailable or naively obtained, calling for more advanced methods to its estimation. Indeed, graph topology inference methods that estimate the network structure from a set of signal observations have a long and well established history. By assuming that the observations are both Gaussian and stationary in the sought graph, this paper proposes a new scheme to learn the network from nodal observations. Consideration of graph stationarity overcomes some of the limitations of the classical Graphical Lasso algorithm, which is constrained to a more specific class of graphical models. On the other hand, Gaussianity allows us to regularize the estimation, requiring less samples than in existing graph stationarity-based approaches. While the resultant estimation (optimization) problem is more complex and non-convex, we design an alternating convex approach able to find a stationary solution. Numerical tests with synthetic and real data are presented, and the performance of our approach is compared with existing alternatives.