Backdoor attacks have posed a significant threat to the security of deep neural networks (DNNs). Despite considerable strides in developing defenses against backdoor attacks in the visual domain, the specialized defenses for the audio domain remain empty. Furthermore, the defenses adapted from the visual to audio domain demonstrate limited effectiveness. To fill this gap, we propose Gradient Norm-based FineTuning (GN-FT), a novel defense strategy against the attacks in the audio domain, based on the observation from the corresponding backdoored models. Specifically, we first empirically find that the backdoored neurons exhibit greater gradient values compared to other neurons, while clean neurons stay the lowest. On this basis, we fine-tune the backdoored model by incorporating the gradient norm regularization, aiming to weaken and reduce the backdoored neurons. We further approximate the loss computation for lower implementation costs. Extensive experiments on two speech recognition datasets across five models demonstrate the superior performance of our proposed method. To the best of our knowledge, this work is the first specialized and effective defense against backdoor attacks in the audio domain.