Computer simulators are nowadays widely used to understand complex physical systems in many areas such as aerospace, renewable energy, climate modeling, and manufacturing. One fundamental issue in the study of computer simulators is known as experimental design, that is, how to select the input settings where the computer simulator is run and the corresponding response is collected. Extra care should be taken in the selection process because computer simulators can be computationally expensive to run. The selection shall acknowledge and achieve the goal of the analysis. This article focuses on the goal of producing more accurate prediction which is important for risk assessment and decision making. We propose two new methods of design approaches that sequentially select input settings to achieve this goal. The approaches make novel applications of simultaneous and sequential contour estimations. Numerical examples are employed to demonstrate the effectiveness of the proposed approaches.