https://github.com/koriavinash1/GLANCE-Explanations}.
Most of the current explainability techniques focus on capturing the importance of features in input space. However, given the complexity of models and data-generating processes, the resulting explanations are far from being `complete', in that they lack an indication of feature interactions and visualization of their `effect'. In this work, we propose a novel twin-surrogate explainability framework to explain the decisions made by any CNN-based image classifier (irrespective of the architecture). For this, we first disentangle latent features from the classifier, followed by aligning these features to observed/human-defined `context' features. These aligned features form semantically meaningful concepts that are used for extracting a causal graph depicting the `perceived' data-generating process, describing the inter- and intra-feature interactions between unobserved latent features and observed `context' features. This causal graph serves as a global model from which local explanations of different forms can be extracted. Specifically, we provide a generator to visualize the `effect' of interactions among features in latent space and draw feature importance therefrom as local explanations. Our framework utilizes adversarial knowledge distillation to faithfully learn a representation from the classifiers' latent space and use it for extracting visual explanations. We use the styleGAN-v2 architecture with an additional regularization term to enforce disentanglement and alignment. We demonstrate and evaluate explanations obtained with our framework on Morpho-MNIST and on the FFHQ human faces dataset. Our framework is available at \url{