Sequential recommendation is an important recommendation task that aims to predict the next item in a sequence. Recently, adaptations of language models, particularly Transformer-based models such as SASRec and BERT4Rec, have achieved state-of-the-art results in sequential recommendation. In these models, item ids replace tokens in the original language models. However, this approach has limitations. First, the vocabulary of item ids may be many times larger than in language models. Second, the classical Top-K recommendation approach used by these models may not be optimal for complex recommendation objectives, including auxiliary objectives such as diversity, coverage or coherence. Recent progress in generative language models inspires us to revisit generative approaches to address these challenges. This paper presents the GPTRec sequential recommendation model, which is based on the GPT-2 architecture. GPTRec can address large vocabulary issues by splitting item ids into sub-id tokens using a novel SVD Tokenisation algorithm based on quantised item embeddings from an SVD decomposition of the user-item interaction matrix. The paper also presents a novel Next-K recommendation strategy, which generates recommendations item-by-item, considering already recommended items. The Next-K strategy can be used for producing complex interdependent recommendation lists. We experiment with GPTRec on the MovieLens-1M dataset and show that using sub-item tokenisation GPTRec can match the quality of SASRec while reducing the embedding table by 40%. We also show that the recommendations generated by GPTRec on MovieLens-1M using the Next-K recommendation strategy match the quality of SASRec in terms of NDCG@10, meaning that the model can serve as a strong starting point for future research.