We propose a geometry-to-flow diffusion model that utilizes the input of obstacle shape to predict a flow field past the obstacle. The model is based on a learnable Markov transition kernel to recover the data distribution from the Gaussian distribution. The Markov process is conditioned on the obstacle geometry, estimating the noise to be removed at each step, implemented via a U-Net. A cross-attention mechanism incorporates the geometry as a prompt. We train the geometry-to-flow diffusion model using a dataset of flows past simple obstacles, including the circle, ellipse, rectangle, and triangle. For comparison, the CNN model is trained using the same dataset. Tests are carried out on flows past obstacles with simple and complex geometries, representing interpolation and extrapolation on the geometry condition, respectively. In the test set, challenging scenarios include a cross and characters `PKU'. Generated flow fields show that the geometry-to-flow diffusion model is superior to the CNN model in predicting instantaneous flow fields and handling complex geometries. Quantitative analysis of the model accuracy and divergence in the fields demonstrate the high robustness of the diffusion model, indicating that the diffusion model learns physical laws implicitly.