We propose a high-performance fully convolutional neural network (FCN) for historical document segmentation that is designed to process a single page in one step. The advantage of this model beside its speed is its ability to directly learn from raw pixels instead of using preprocessing steps e. g. feature computation or superpixel generation. We show that this network yields better results than existing methods on different public data sets. For evaluation of this model we introduce a novel metric that is independent of ambiguous ground truth called Foreground Pixel Accuracy (FgPA). This pixel based measure only counts foreground pixels in the binarized page, any background pixel is omitted. The major advantage of this metric is, that it enables researchers to compare different segmentation methods on their ability to successfully segment text or pictures and not on their ability to learn and possibly overfit the peculiarities of an ambiguous hand-made ground truth segmentation.