In contrast with ad-hoc methods for eXplainable Artificial Intelligence (XAI), formal explainability offers important guarantees of rigor. However, formal explainability is hindered by poor scalability for some families of classifiers, the most significant being neural networks. As a result, there are concerns as to whether formal explainability might serve to complement other approaches in delivering trustworthy AI. This paper addresses the limitation of scalability of formal explainability, and proposes novel algorithms for computing formal explanations. The novel algorithm computes explanations by answering instead a number of robustness queries, and such that the number of such queries is at most linear on the number of features. Consequently, the proposed algorithm establishes a direct relationship between the practical complexity of formal explainability and that of robustness. More importantly, the paper generalizes the definition of formal explanation, thereby allowing the use of robustness tools that are based on different distance norms, and also by reasoning in terms of some target degree of robustness. The experiments validate the practical efficiency of the proposed approach.