https://github.com/mmaaz-git/markovml.
We introduce the problem of formally verifying properties of Markov processes where the parameters are the output of machine learning models. Our formulation is general and solves a wide range of problems, including verifying properties of probabilistic programs that use machine learning, and subgroup analysis in healthcare modeling. We show that for a broad class of machine learning models, including linear models, tree-based models, and neural networks, verifying properties of Markov chains like reachability, hitting time, and total reward can be formulated as a bilinear program. We develop a decomposition and bound propagation scheme for solving the bilinear program and show through computational experiments that our method solves the problem to global optimality up to 100x faster than state-of-the-art solvers. We also release $\texttt{markovml}$, an open-source tool for building Markov processes, integrating pretrained machine learning models, and verifying their properties, available at