Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!
Abstract:Recommender systems suffer from the cold-start problem whenever a new user joins the platform or a new item is added to the catalog. To address item cold-start, we propose to replace the embedding layer in sequential recommenders with a dynamic storage that has no learnable weights and can keep an arbitrary number of representations. In this paper, we present FELRec, a large embedding network that refines the existing representations of users and items in a recursive manner, as new information becomes available. In contrast to similar approaches, our model represents new users and items without side information or time-consuming fine-tuning. During item cold-start, our method outperforms similar method by 29.50%-47.45%. Further, our proposed model generalizes well to previously unseen datasets. The source code is publicly available at github.com/kweimann/FELRec.