The dynamical evolution of a neural network during training has been an incredibly fascinating subject of study. First principal derivation of generic evolution of variables in statistical physics systems has proved useful when used to describe training dynamics conceptually, which in practice means numerically solving equations such as Fokker-Planck equation. Simulating entire networks inevitably runs into the curse of dimensionality. In this paper, we utilize Fokker-Planck to simulate the probability density evolution of individual weight matrices in the bottleneck layers of a simple 2-bottleneck-layered auto-encoder and compare the theoretical evolutions against the empirical ones by examining the output data distributions. We also derive physically relevant partial differential equations such as Callan-Symanzik and Kardar-Parisi-Zhang equations from the dynamical equation we have.