Fluid antennas present a relatively new idea for harnessing the fading and interference issues in multiple user wireless systems, such as 6G. Here, we systematically compare their unique radiation beam forming mechanism to the existing multiple-antenna systems in a wireless system. Subsequently, a unified mathematical model for fluid antennas is deduced based on the eigenmode theory. As mathematically derived from the multimode resonant theory, the spectral expansion model of any antennas which occupy variable spaces and have changeable feeding schemes can be generalized as fluid antennas. Non-liquid and liquid fluid antenna examples are presented, simulated and discussed. The symmetry or modal parity of eigenmodes is explored as an additional degree of freedom to design the fluid antennas for future wireless systems. As conceptually deduced and illustrated, the multi-dimensional and continuously adaptive ability of eigenmodes can be considered as the most fundamental intrinsic characteristic of the fluid antenna systems. It opens an uncharted area in the developments of intelligent antennas (IAs), which brings more flexibility to on-demand antenna beam null manipulating techniques for future wireless applications.