Deep Learning (DL) is penetrating into a diverse range of mass mobility, smart living, and industrial applications, rapidly transforming the way we live and work. DL is at the heart of many AI implementations. A key set of challenges is to produce AI modules that are: (1) "circular" - can solve new tasks without forgetting how to solve previous ones, (2) "secure" - have immunity to adversarial data attacks, and (3) "tiny" - implementable in low power low cost embedded hardware. Clearly it is difficult to achieve all three aspects on a single horizontal layer of platforms, as the techniques require transformed deep representations that incur different computation and communication requirements. Here we set out the vision to achieve transformed DL representations across a 5G and Beyond networked architecture. We first detail the cross-sectoral motivations for each challenge area, before demonstrating recent advances in DL research that can achieve circular, secure, and tiny AI (CST-AI). Recognising the conflicting demand of each transformed deep representation, we federate their deep learning transformations and functionalities across the network to achieve connected run-time capabilities.