In recent years, Federated Graph Learning (FGL) has gained significant attention for its distributed training capabilities in graph-based machine intelligence applications, mitigating data silos while offering a new perspective for privacy-preserve large-scale graph learning. However, multi-level FGL heterogeneity presents various client-server collaboration challenges: (1) Model-level: The variation in clients for expected performance and scalability necessitates the deployment of heterogeneous models. Unfortunately, most FGL methods rigidly demand identical client models due to the direct model weight aggregation on the server. (2) Data-level: The intricate nature of graphs, marked by the entanglement of node profiles and topology, poses an optimization dilemma. This implies that models obtained by federated training struggle to achieve superior performance. (3) Communication-level: Some FGL methods attempt to increase message sharing among clients or between clients and the server to improve training, which inevitably leads to high communication costs. In this paper, we propose FedPG as a general prototype-guided optimization method for the above multi-level FGL heterogeneity. Specifically, on the client side, we integrate multi-level topology-aware prototypes to capture local graph semantics. Subsequently, on the server side, leveraging the uploaded prototypes, we employ topology-guided contrastive learning and personalized technology to tailor global prototypes for each client, broadcasting them to improve local training. Experiments demonstrate that FedPG outperforms SOTA baselines by an average of 3.57\% in accuracy while reducing communication costs by 168x.