In the realm of machine learning (ML) systems featuring client-host connections, the enhancement of privacy security can be effectively achieved through federated learning (FL) as a secure distributed ML methodology. FL effectively integrates cloud infrastructure to transfer ML models onto edge servers using blockchain technology. Through this mechanism, it guarantees the streamlined processing and data storage requirements of both centralized and decentralized systems, with an emphasis on scalability, privacy considerations, and cost-effective communication. In current FL implementations, data owners locally train their models, and subsequently upload the outcomes in the form of weights, gradients, and parameters to the cloud for overall model aggregation. This innovation obviates the necessity of engaging Internet of Things (IoT) clients and participants to communicate raw and potentially confidential data directly with a cloud center. This not only reduces the costs associated with communication networks but also enhances the protection of private data. This survey conducts an analysis and comparison of recent FL applications, aiming to assess their efficiency, accuracy, and privacy protection. However, in light of the complex and evolving nature of FL, it becomes evident that additional research is imperative to address lingering knowledge gaps and effectively confront the forthcoming challenges in this field. In this study, we categorize recent literature into the following clusters: privacy protection, resource allocation, case study analysis, and applications. Furthermore, at the end of each section, we tabulate the open areas and future directions presented in the referenced literature, affording researchers and scholars an insightful view of the evolution of the field.