We tackle the problem of feature unlearning from a pretrained image generative model. Unlike a common unlearning task where an unlearning target is a subset of the training set, we aim to unlearn a specific feature, such as hairstyle from facial images, from the pretrained generative models. As the target feature is only presented in a local region of an image, unlearning the entire image from the pretrained model may result in losing other details in the remaining region of the image. To specify which features to unlearn, we develop an implicit feedback mechanism where a user can select images containing the target feature. From the implicit feedback, we identify a latent representation corresponding to the target feature and then use the representation to unlearn the generative model. Our framework is generalizable for the two well-known families of generative models: GANs and VAEs. Through experiments on MNIST and CelebA datasets, we show that target features are successfully removed while keeping the fidelity of the original models.