Burst image processing (BIP), which captures and integrates multiple frames into a single high-quality image, is widely used in consumer cameras. As a typical BIP task, Burst Image Super-Resolution (BISR) has achieved notable progress through deep learning in recent years. Existing BISR methods typically involve three key stages: alignment, upsampling, and fusion, often in varying orders and implementations. Among these stages, alignment is particularly critical for ensuring accurate feature matching and further reconstruction. However, existing methods often rely on techniques such as deformable convolutions and optical flow to realize alignment, which either focus only on local transformations or lack theoretical grounding, thereby limiting their performance. To alleviate these issues, we propose a novel framework for BISR, featuring an equivariant convolution-based alignment, ensuring consistent transformations between the image and feature domains. This enables the alignment transformation to be learned via explicit supervision in the image domain and easily applied in the feature domain in a theoretically sound way, effectively improving alignment accuracy. Additionally, we design an effective reconstruction module with advanced deep architectures for upsampling and fusion to obtain the final BISR result. Extensive experiments on BISR benchmarks show the superior performance of our approach in both quantitative metrics and visual quality.