Teams of networked autonomous agents have been used in a number of applications, such as mobile sensor networks and intelligent transportation systems. However, in such systems, the effect of faults and errors in one or more of the sub-systems can easily spread throughout the network, quickly degrading the performance of the entire system. In consensus-driven dynamics, the effects of faults are particularly relevant because of the presence of unconstrained rigid modes in the transfer function of the system. Here, we propose a two-stage technique for the identification and accommodation of a biased-measurements agent, in a network of mobile robots with time invariant interaction topology. We assume these interactions to only take place in the form of relative position measurements. A fault identification filter deployed on a single observer agent is used to estimate a single fault occurring anywhere in the network. Once the fault is detected, an optimal leader-based accommodation strategy is initiated. Results are presented by means of numerical simulations and robot experiments.