A distributed coordination method for solving multi-vehicle lane changes for connected autonomous vehicles (CAVs) is presented. Existing approaches to multi-vehicle lane changes are passive and opportunistic as they are implemented only when the environment allows it. The novel approach of this paper relies on the role of a facilitator assigned to a CAV. The facilitator interacts with and modifies the environment to enable lane changes of other CAVs. Distributed MPC path planners and a distributed coordination algorithm are used to control the facilitator and other CAVs in a proactive and cooperative way. We demonstrate the effectiveness of the proposed approach through numerical simulations. In particular, we show enhanced feasibility of a multi-CAV lane change in comparison to the simultaneous multi-CAV lane change approach in various traffic conditions generated by using a data-set from real-traffic scenarios.