There exist many methods to explain how an image classification model generates its decision, but very little work has explored methods to explain why a classifier might lack confidence in its prediction. As there are various reasons the classifier might lose confidence, it would be valuable for this model to not only indicate its level of uncertainty but also explain why it is uncertain. Counterfactual images have been used to visualize changes that could be made to an image to generate a different classification decision. In this work, we explore the use of counterfactuals to offer an explanation for low model competency--a generalized form of predictive uncertainty that measures confidence. Toward this end, we develop five novel methods to generate high-competency counterfactual images, namely Image Gradient Descent (IGD), Feature Gradient Descent (FGD), Autoencoder Reconstruction (Reco), Latent Gradient Descent (LGD), and Latent Nearest Neighbors (LNN). We evaluate these methods across two unique datasets containing images with six known causes for low model competency and find Reco, LGD, and LNN to be the most promising methods for counterfactual generation. We further evaluate how these three methods can be utilized by pre-trained Multimodal Large Language Models (MLLMs) to generate language explanations for low model competency. We find that the inclusion of a counterfactual image in the language model query greatly increases the ability of the model to generate an accurate explanation for the cause of low model competency, thus demonstrating the utility of counterfactual images in explaining low perception model competency.