This work studies the Tensor Robust Principal Component Analysis (TRPCA) problem, which aims to exactly recover the low-rank and sparse components from their sum. Our model is motivated by the recently proposed linear transforms based tensor-tensor product and tensor SVD. We define a new transforms depended tensor rank and the corresponding tensor nuclear norm. Then we solve the TRPCA problem by convex optimization whose objective is a weighted combination of the new tensor nuclear norm and the $\ell_1$-norm. In theory, we show that under certain incoherence conditions, the convex program exactly recovers the underlying low-rank and sparse components. It is of great interest that our new TRPCA model generalizes existing works. In particular, if the studied tensor reduces to a matrix, our TRPCA model reduces to the known matrix RPCA. Our new TRPCA which is allowed to use general linear transforms can be regarded as an extension of our former TRPCA work which uses the discrete Fourier transform. But their proof of the recovery guarantee is different. Numerical experiments verify our results and the application on image recovery demonstrates the superiority of our method.