Machine Learning models are used in a wide variety of domains. However, machine learning methods often require a large amount of data in order to be successful. This is especially troublesome in domains where collecting real-world data is difficult and/or expensive. Data simulators do exist for many of these domains, but they do not sufficiently reflect the real world data due to factors such as a lack of real-world noise. Recently generative adversarial networks (GANs) have been modified to refine simulated image data into data that better fits the real world distribution, using the SimGAN method. While evolutionary computing has been used for GAN evolution, there are currently no frameworks that can evolve a SimGAN. In this paper we (1) extend the SimGAN method to refine one-dimensional data, (2) modify Easy Cartesian Genetic Programming (ezCGP), an evolutionary computing framework, to create SimGANs that more accurately refine simulated data, and (3) create new feature-based quantitative metrics to evaluate refined data. We also use our framework to augment an electrocardiogram (ECG) dataset, a domain that suffers from the issues previously mentioned. In particular, while healthy ECGs can be simulated there are no current simulators of abnormal ECGs. We show that by using an evolved SimGAN to refine simulated healthy ECG data to mimic real-world abnormal ECGs, we can improve the accuracy of abnormal ECG classifiers.