Human fixation patterns have been shown to correlate strongly with Transformer-based attention. Those correlation analyses are usually carried out without taking into account individual differences between participants and are mostly done on monolingual datasets making it difficult to generalise findings. In this paper, we analyse eye-tracking data from speakers of 13 different languages reading both in their native language (L1) and in English as language learners (L2). We find considerable differences between languages but also that individual reading behaviour such as skipping rate, total reading time and vocabulary knowledge (LexTALE) influence the alignment between humans and models to an extent that should be considered in future studies.