In real life, many dynamic events, such as major disasters and large-scale sports events, evolve continuously over time. Obtaining an overview of these events can help people quickly understand the situation and respond more effectively. This is challenging because the key information of the event is often scattered across multiple documents, involving complex event knowledge understanding and reasoning, which is under-explored in previous work. Therefore, we proposed the Event-Centric Multi-Document Summarization (ECS) task, which aims to generate concise and comprehensive summaries of a given event based on multiple related news documents. Based on this, we constructed the EventSum dataset, which was constructed using Baidu Baike entries and underwent extensive human annotation, to facilitate relevant research. It is the first large scale Chinese multi-document summarization dataset, containing 5,100 events and a total of 57,984 news documents, with an average of 11.4 input news documents and 13,471 characters per event. To ensure data quality and mitigate potential data leakage, we adopted a multi-stage annotation approach for manually labeling the test set. Given the complexity of event-related information, existing metrics struggle to comprehensively assess the quality of generated summaries. We designed specific metrics including Event Recall, Argument Recall, Causal Recall, and Temporal Recall along with corresponding calculation methods for evaluation. We conducted comprehensive experiments on EventSum to evaluate the performance of advanced long-context Large Language Models (LLMs) on this task. Our experimental results indicate that: 1) The event-centric multi-document summarization task remains challenging for existing long-context LLMs; 2) The recall metrics we designed are crucial for evaluating the comprehensiveness of the summary information.