With the rise of LLMs, a large number of Model Context Protocol (MCP) services have emerged since the end of 2024. However, the effectiveness and efficiency of MCP servers have not been well studied. To study these questions, we propose an evaluation framework, called MCPBench. We selected several widely used MCP server and conducted an experimental evaluation on their accuracy, time, and token usage. Our experiments showed that the most effective MCP, Bing Web Search, achieved an accuracy of 64%. Importantly, we found that the accuracy of MCP servers can be substantially enhanced by involving declarative interface. This research paves the way for further investigations into optimized MCP implementations, ultimately leading to better AI-driven applications and data retrieval solutions.