Attention mechanisms have played a crucial role in the development of complex architectures such as Transformers in natural language processing. However, Transformers remain hard to interpret and are considered as black-boxes. This paper aims to assess how attention coefficients from Transformers can help in providing interpretability. A new attention-based interpretability method called CLaSsification-Attention (CLS-A) is proposed. CLS-A computes an interpretability score for each word based on the attention coefficient distribution related to the part specific to the classification task within the Transformer architecture. A human-grounded experiment is conducted to evaluate and compare CLS-A to other interpretability methods. The experimental protocol relies on the capacity of an interpretability method to provide explanation in line with human reasoning. Experiment design includes measuring reaction times and correct response rates by human subjects. CLS-A performs comparably to usual interpretability methods regarding average participant reaction time and accuracy. The lower computational cost of CLS-A compared to other interpretability methods and its availability by design within the classifier make it particularly interesting. Data analysis also highlights the link between the probability score of a classifier prediction and adequate explanations. Finally, our work confirms the relevancy of the use of CLS-A and shows to which extent self-attention contains rich information to explain Transformer classifiers.