In open-domain dialogues, predictive uncertainties are mainly evaluated in a domain shift setting to cope with out-of-distribution inputs. However, in real-world conversations, there could be more extensive distributional shifted inputs than the out-of-distribution. To evaluate this, we first propose two methods, Unknown Word (UW) and Insufficient Context (IC), enabling gradual distributional shifts by corruption on the dialogue dataset. We then investigate the effect of distributional shifts on accuracy and calibration. Our experiments show that the performance of existing uncertainty estimation methods consistently degrades with intensifying the shift. The results suggest that the proposed methods could be useful for evaluating the calibration of dialogue systems under distributional shifts.