Esports, a sports competition using video games, has become one of the most important sporting events in recent years. Although the amount of esports data is increasing than ever, only a small fraction of those data accompanies text commentaries for the audience to retrieve and understand the plays. Therefore, in this study, we introduce a task of generating game commentaries from structured data records to address the problem. We first build a large-scale esports data-to-text dataset using structured data and commentaries from a popular esports game, League of Legends. On this dataset, we devise several data preprocessing methods including linearization and data splitting to augment its quality. We then introduce several baseline encoder-decoder models and propose a hierarchical model to generate game commentaries. Considering the characteristics of esports commentaries, we design evaluation metrics including three aspects of the output: correctness, fluency, and strategic depth. Experimental results on our large-scale esports dataset confirmed the advantage of the hierarchical model, and the results revealed several challenges of this novel task.