We present ENTED, a new framework for blind face restoration that aims to restore high-quality and realistic portrait images. Our method involves repairing a single degraded input image using a high-quality reference image. We utilize a texture extraction and distribution framework to transfer high-quality texture features between the degraded input and reference image. However, the StyleGAN-like architecture in our framework requires high-quality latent codes to generate realistic images. The latent code extracted from the degraded input image often contains corrupted features, making it difficult to align the semantic information from the input with the high-quality textures from the reference. To overcome this challenge, we employ two special techniques. The first technique, inspired by vector quantization, replaces corrupted semantic features with high-quality code words. The second technique generates style codes that carry photorealistic texture information from a more informative latent space developed using the high-quality features in the reference image's manifold. Extensive experiments conducted on synthetic and real-world datasets demonstrate that our method produces results with more realistic contextual details and outperforms state-of-the-art methods. A thorough ablation study confirms the effectiveness of each proposed module.