Since the birth of Bitcoin in 2009, cryptocurrencies have emerged to become a global phenomenon and an important decentralized financial asset. Due to this decentralization, the value of these digital currencies against fiat currencies is highly volatile over time. Therefore, forecasting the crypto-fiat currency exchange rate is an extremely challenging task. For reliable forecasting, this paper proposes a multimodal AdaBoost-LSTM ensemble approach that employs all modalities which derive price fluctuation such as social media sentiments, search volumes, blockchain information, and trading data. To better support investment decision making, the approach forecasts also the fluctuation distribution. The conducted extensive experiments demonstrated the effectiveness of relying on multimodalities instead of only trading data. Further experiments demonstrate the outperformance of the proposed approach compared to existing tools and methods with a 19.29% improvement.