As aerial robots gain traction in industrial applications, there is growing interest in enhancing their physical interaction capabilities. Pushing tasks performed by aerial manipulators have been successfully demonstrated in contact-based inspections. However, more complex industrial applications require these systems to support higher-DoF (Degree of Freedom) manipulators and generate larger forces while pushing (e.g., drilling, grinding). This paper builds on our previous work, where we introduced an aerial vehicle with a dynamically displacing CoM (Center of Mass) to improve force exertion during interactions. We propose a novel approach to further enhance this system's force generation by optimizing its CoM location during interactions. Additionally, we study the case of this aerial vehicle equipped with a 2-DoF manipulation arm to extend the system's functionality in tool-based tasks. The effectiveness of the proposed methods is validated through simulations, demonstrating the potential of this system for advanced aerial manipulation in practical settings.