This paper presents a novel approach to achieving secure wireless communication by leveraging the inherent characteristics of wireless channels through end-to-end learning using a single-input-multiple-output (SIMO) autoencoder (AE). To ensure a more realistic signal transmission, we derive the signal model that captures all radio frequency (RF) hardware impairments to provide reliable and secure communication. Performance evaluations against traditional linear decoders, such as zero-forcing (ZR) and linear minimum mean square error (LMMSE), and the optimal nonlinear decoder, maximum likelihood (ML), demonstrate that the AE-based SIMO model exhibits superior bit error rate (BER) performance, but with a substantial gap even in the presence of RF hardware impairments. Additionally, the proposed model offers enhanced security features, preventing potential eavesdroppers from intercepting transmitted information and leveraging RF impairments for augmented physical layer security and device identification. These findings underscore the efficacy of the proposed end-to-end learning approach in achieving secure and robust wireless communication.